Three Types of Table Compression, Part 1

A tale about a room with two doors in plain view, and a hidden forgotten third door...

hrvatska udruga oracle korisnika

Tim Gorman

Delphix

Thursday, 16-Oct 2014

Agenda

- The story behind the story
- Overview of data compression
- Overview of table data compression in Oracle database
 - Review of related concepts within Oracle database
 - Internal block and row formats
 - · Cluster tables, row-chaining, and direct-path loads
- Details of BASIC/OLTP and HCC table compression
 - De-duplication compression (basic and OLTP)
 - Hybrid Columnar Compression (HCC)
- Trailing NULL columns
 - The rest of the story

Today's agenda

- The story behind the story
- Overview of data compression
- Overview of table data compression in Oracle database
 - Review of related concepts within Oracle database
 - Internal block and row formats
 - Cluster tables, row-chaining, and direct-path loads
- Details of BASIC/OLTP and HCC table compression
 - De-duplication compression (basic and OLTP)
 - Hybrid Columnar Compression (HCC)
- Trailing NULL columns
 - The rest of the story

Tomorrow's agenda

- The story behind the story
- Overview of data compression
- Overview of table data compression in Oracle database
 - Review of related concepts within Oracle database
 - Internal block and row formats
 - Cluster tables, row-chaining, and direct-path loads
- Details of BASIC/OLTP and HCC table compression
 - De-duplication compression (basic and OLTP)
 - Hybrid Columnar Compression (HCC)
- Trailing NULL columns
 - The rest of the story

The Story Behind The Story

- This isn't a presentation about table compression
 - It ended up that way, however
- Instead, this began as a story about a solution to a specific problem
 - It was a lot of fun
 - I wanted to share it
 - But I had to fill in a lot of background before getting to the punch line
 - Which seems to make this a presentation about compression
 - O Please bear with me for the next 59 minutes?

Data Compression

- White paper: Introduction to Data Compression
 - Guy E Blelloch, Carnegie-Mellon University, 25-Sep 2010
 - http://www.cs.cmu.edu/afs/cs/project/pscicoguyb/realworld/www/compression.pdf
- Lempel Ziv (LZ) lossless compression methods
 - Simplified generic LZ algorithm
 - Divides source into fixed-length (i.e. 10- or 12-bit) patterns
 - Stores distinct patterns in lookup table
 - Replaces patterns in output stream with lookup hash value
 - Variations on LZ methods
 - DEFLATE: focuses on speed (zip, gzip, LZO, ZLIB, etc)
 - Layered compression: focuses on compression ratio, relatively slow, uses several layers of compression techniques (BZIP2)

Compression in Oracle

- Index compression
- Table compression
 - o Basic
 - o OLTP*
- RMAN backup compression*
- SecureFile (LOB) compression*

* Advanced Compression Option

- Data Pump export compression* * Exadata / ZFS / Pillar storage only
- Data Guard redo transport compression*
- Hybrid Columnar compression*

Oracle9i
Oracle10g
Oracle11gR1
Oracle11gR2

Compression in Oracle

- Index compression
- Table compression
 - o Basic
 - OLTP*
- RMAN backup compression*
- SecureFile (LOB) compression*

* Advanced Compression Option

- Data Pump export compression* * Exadata / ZFS / Pillar storage only
- Data Guard redo transport compression*
- Hybrid Columnar compression*

Oracle9i
Oracle10g
Oracle11gR1
Oracle11gR2

Table Compression

```
CREATE TABLE ...

COMPRESS [ FOR DIRECT_LOAD OPERATIONS | BASIC ]

COMPRESS FOR ALL OPERATIONS | COMPRESS FOR OLTP

COMPRESS FOR QUERY [ LOW | HIGH ]

COMPRESS FOR ARCHIVE [ LOW | HIGH ]
```

Key

- Oracle9i +
- Oracle11gR1
- Oracle11gR2 +

COMPRESS [BASIC]

- Similar in concept to LZ algorithm
 - Distinct column values stored in symbol table within block
 - Column values replaced by offset value into symbol table
- Initial Oracle table compression implementation
 - No extra cost with Enterprise Edition, not available in Standard Edition
 - o Enabled with COMPRESS in 9i and 10g, COMPRESS [FOR DIRECT_LOAD OPERATIONS] in 11gR1, COMPRESS [BASIC] from 11gR2 onward
 - Available only during direct-path bulk-loading operations
- Restrictions and limitations
 - Not supported for:
 - tables with more than 255 columns
 - index-organized tables (IOTs)
 - table clusters
 - ALTER TABLE .. DROP COLUMN not supported
 - Can only SET UNUSED

COMPRESS FOR OLTP

Advanced compression option

- Additional licensing required in addition to Enterprise Edition
- o Enabled with COMPRESS FOR ALL OPERATIONS added in 11gR1
 - Later renamed to COMPRESS FOR OLTP in 11gR2
- Allows all types of conventional and direct-path DML
 - Compression triggered when block FULL encountered

Restrictions and limitations

- Not supported for:
 - tables with more than 255 columns
 - index-organized tables (IOTs)
 - table clusters
- Migrated chained rows will be compressed
 - But rows chained due to row-length exceeding block size will not
- Required List of Critical Patches
 - Support note #1061366.1

Block Format

Database block layout illustration

Block Format

Header

- Fixed header (110 bytes)
 - KCBH: Type, hdr, RDBA, SCN Base/Wrap, Seq, Flag, Chksum, (20 bytes)
 - KTBBH: Transaction Fixed Header (72 bytes)
 - KDBH: Data Header Structure (14 bytes)
 - KDBT: Table Directory Entry (4 bytes)
- Interested Transaction List or ITL
 - XID, UBA, flag, lock, SCN Base/Wrap(23 bytes)
 - INITRANS <= number of entries <= MAXTRANS

Free space

- Header grows outward from beginning, row data grows inward from tail
- Tail
 - Check(4 bytes, fixed)
- Row entries

Row Format

Row-header

- Flag :: Lock :: column-count [:: cluster-key-ID [:: chained-ROWID]]
 - Flag, Lock, column-count = 1 byte each
 - cluster-key-ID
 - chained-ROWID (6-8 bytes)

Column-piece

- Length :: data
 - Length <= 254 byres then 1-byte
 - Else length > 254 bytes, then 3-bytes
 - Data
 - DATE = 7 bytes
 - NUMBER = 1 byte exponent plus variable-length mantissa
 - VARCHAR2, CHAR = text
 - NULL data values
 - Non-trailing placeholder = 0xFF
 - Trailing NULLs are not stored

Row Format

Cluster Tables

- Tables which share one or more columns
 - Known as cluster key columns
- Rows from clustered tables reside within the same database block
 - Physically pre-joined relational tables

Interested Txn List (ITL)

Free space

Cluster keys (table 0)

(table 1)

(table 2)

Cluster Tables

```
Flag byte
tab 0, row 0, @0x3f87
                                                           showing
tl: 25 fb: K-H-FL-- 1b: 0x0 cc: 1
                                                           "cluster
curc: 6 comc: 6 pk: 0x0040db0d.0 nk: 0x0040db0d.0
col 0: [5] c4 04 04 50 24
tab 0, row 1, @0x3f6e
tl: 25 fb: K-H-FL-- lb: 0x0 cc: 1
                                                          Key value
curc: 18 comc: 18 pk: 0x0040db0d.1 nk: 0x0040db0d.1
col 0: [5] c4 04 04 50 25
```

...several hundred lines edited out for brevity...

```
tab 1, row 0, @0x3a1b
tl: 65 fb: -CH-FL-- lb: 0x0 cc: 20 cki: 0
col 0: [4] c3 05 45 2c
col 1: [2] c1 02
col 2: [2] c1 08
```

...several hundred lines edited out for brevity...

Reference back to cluster key

key"

DUMP traces

ALTER SYSTEM DUMP command

```
DATAFILE [ file# | 'file-name' ]

BLOCK [ block# | MIN block# BLOCK MAX block# ]
```

Examples in SQL*Plus...

```
SHOW PARAMETER USER_DUMP_DEST

ALTER SESSION SET TRACEFILE_IDENTIFIER = DUMP_DBF;

ALTER SYSTEM DUMP DATAFILE 11 BLOCK 2378;

ALTER SYSTEM DUMP DATAFILE 741 BLOCK MIN 62078 BLOCK MAX 62085:
```

- Finding file# and block# for an object...
 - View DBA_EXTENTS columns FILE_ID, BLOCK_ID, and (BLOCKS-1)

```
select 'ALTER SYSTEM DUMP DATAFILE '||file_id||
'BLOCK MIN '||block_id||' BLOCK MAX '||(block_id-1)||';' txt

from dba_extents

where segment_name = 'T1_PK' and segment_type = 'INDEX'

order by file_id, block_id;
```


Row Chaining

- Rows are chained for three reasons
 - Row migration
 - An UPDATE increases the length of the row so it can no longer fit
 - Only the row header is left behind, and chain-ROWID points to the location of the row in a different block
 - Row chaining across blocks
 - Row takes more space than database blocks can provide
 - Row is broken into pieces to fit, and chained <u>across</u> blocks
 - Chain-ROWID points to the location of the next chunk
 - Row chaining within blocks
 - Row has more than 255 columns
 - Row is broken into 255-column pieces, and chained within blocks
 - No Chain-ROWID used, row pieces are adjacent within block

Row Chaining

```
tab 0, row 0, @0x3c8a

t1: 766 fb: ----L-- lb: 0x1 cc: 255

col 0: [2] cl 10

col 1: [2] cl 11

col 2: [2] cl 12
```

 Dump of example table with 300 numeric columns

...several hundred lines edited out for brevity...

```
col 253: [ 2] c1 13

col 254: [ 2] c1 14

tab 0, row 1, @0x3bfb

tl: 143 fb: --H-F--- lb: 0x1 cc: 45

nrid: 0x06c1472e.0

col 0: [ 1] 80

col 1: [ 2] c1 02

col 2: [ 2] c1 03
```

...several dozen lines edited out for brevity...

```
col 43: [2] c1 0e col 44: [2] c1 0f
```


- Bulk loading feature first introduced in Oracle6
 FASTLOAD utility on MVS only
 - Compete with DB2 on MVS
 - Incorporated into SQL*Loader DIRECT=TRUE in v7.0
 - Extended to parallel CREATE INDEX in v7.1
 - Extended to CREATE TABLE ... AS SELECT in v7.2
 - Extended to INSERT /*+ APPEND */ in v8.0
 - Enhanced in v8.1 to leave behind a direct-path log for use by MV "fast" refresh
 - Not much enhancement since...

- Direct-path operations are always INSERT
 - Never UPDATE or DELETE operations
- Loads data outside of "managed space"
 - During a serial direct-path load operation...
 - loads data above the "high-water mark" in the segment
 - After successful completion, high-water mark is raised to include newly-loaded rows in the table
 - During a parallel direct-path load operation...
 - Loads data into newly-created TEMPORARY segments
 - After successful completion, TEMPORARY segments are merged into the original target segment

- Formats new database blocks with inserted row data within private process memory (PGA)
 - Then writes the new and complete database blocks directly to the datafiles
- Largely bypasses many SGA mechanisms
 - Buffer Cache
 - Log Buffer
- Except for changes within data dictionary
 - Object creation and modification is fully recorded in undo and redo

Conventional-path loads

Serial direct-path loads

More rows being inserted using serial direct-path

Serial direct-path load after commit

Serial direct-path load after rollback

Parallel direct-path loads

Rows being loaded by direct-path with parallelism = 4

HWM

Parallel direct-path loads

Rows loaded by direct-path with parallelism = 4 **after commit**

Parallel direct-path loads

Rows loaded by direct-path with parallelism = 4

after rollback

- Must lock the table/index segment(s) against any other data modifications
 - Until COMMIT or ROLLBACK
- Parallel direct-path loads are very similar to a distributed-database transaction
 - Two-phase commit operation
 - Must COMMIT to resolve in-doubt transactions before the session can do anything else

Summary of "Part One"

- The story behind the story
- Overview of data compression
- Overview of table data compression in Oracle database
 - Review of related concepts within Oracle database
 - Internal block and row formats
 - Cluster tables, row-chaining, and direct-path loads
- Details of BASIC/OLTP and HCC table compression
 - De-duplication compression (basic and OLTP)
 - Hybrid Columnar Compression (HCC)
- Trailing NULL columns
 - The rest of the story

Building up to "Part Two"

- The story behind the story
- Overview of data compression
- Overview of table data compression in Oracle database
 - Review of related concepts within Oracle database
 - Internal block and row formats
 - Cluster tables, row-chaining, and direct-path loads
- Details of BASIC/OLTP and HCC table compression
 - De-duplication compression (basic and OLTP)
 - Hybrid Columnar Compression (HCC)
- Trailing NULL columns
 - The rest of the story

References

- Oracle11g Concepts, http://docs.oracle.com/cd/E14072_01/server.112/e10
 1713/logical.htm#i4894
- Graham Thornton
 http://www.orafaq.com/papers/dissassembling_the_dat_a_block.pdf

www.Delphix.com
 HrOUG 2014
 Thu 16-Oct 2014 ● 32

hrvatska udruga oracle korisnika

• Email: tim.gorman@delphix.com

• Blog: http://EvDBT.com/

Papers: http://EvDBT.com/papers/

Scripts: http://EvDBT.com/scripts/

• Twitter: @TimothyJGorman

• Mobile: +1 (303) 885-4526

See you tomorrow morning at 09:00!!!

hrvatska udruga oracle korisnika

• <u>Email</u>: <u>tim.gorman@delphix.com</u>

• Blog: http://EvDBT.com/

O Papers: http://EvDBT.com/papers/

Scripts: http://EvDBT.com/scripts/

• <u>Twitter</u>: @TimothyJGorman

• Mobile: +1 (303) 885-4526

See you tomorrow morning at 09:00!!!

